Input part 3: Implementing
Interaction Techniques

Georgia
Tech @

—




Georgia
Tech

Recap: Interaction techniques

® A method for carrying out a specific interactive task
Example: enter a number in a range
could use... (simulated) slider
(simulated) knob
type in 2 number (text edit box)

Each is a different interaction technique




Suppose we wanted to soss
. . . Georgia eo0o0
implement an interaction for Tech& :°
specifying a line

® Could just specify two endpoints
click, click
not good: no affordance,no feedback
® Better feedback is to use “rubber banding”
stretch out the line as you drag
at all times, shows where you would end up if you “let go”




Georgia
Tech

Aside

® Rubber banding provides good feedback
® How would we provide better affordance!?




Georgia
Tech

Aside

® Rubber banding provides good feedback
® How would we provide better affordance!?

Changing cursor shape is about all we have to work with




Georgia
Tech

Implementing rubber banding

Accept the press for endpoint pl;
P2 = P1;
Draw line P1-P2;

Repeat
Erase line P1-P2;
P2 = current position();

Draw line P1-P2;
Until release event;
Act on line 1input;

&




Tech

Georgia @

Implementing rubber banding

® Need to get around this loop absolute min of 5 times / sec
|0 times better

more would be better

® Notice we need “undraw’ here




(YY)

'TXX

_ XX
Georgia
Tech

What’s wrong with this code!?

Accept the press for endpoint pl;
P2 = P1l;
Draw line P1-P2;

Repeat
Erase line P1-P2;
P2 = current position();

Draw line P1-P2;

Until release event;
Act on line input;




'TXX
_ ' TXX
Georgia eo0o0
Tech : bt

Not event driven

® Not in the basic event / redraw cycle form
don’t want to mix event and sampled

in many systems, can’t ignore events for arbitrary lengths of time

® How do we do this in a normal event / redraw loop!?




You don’t get to write control Ge%ggg@ 3T
flow anymore :

® Basically have to chop up the actions in the code above and
redistribute them in event driven form

“event driven control flow”

need to maintain “state” (where you are) between events and
start up “in the state” you were in when you left off

10




Tech

Georgia @

Finite state machine controllers

® One good way to maintain “state” is to use a state machine
(deterministic) finite state machine

FSM

11




Georgia
Tech

FSM notation

® Circles represent states O

arrow for start state
double circles for “final states”

notion of final state is a little off for user
@ interfaces (don’t ever end)

but still use this for completed actions
generally reset to the start state

12




Tech

Georgia &

FSM notation

® Transitions represented as arcs
Labeled with a “symbol”
for us an event (can vary)
Also optionally labeled with an action

Mouse_Dn / Draw_Line()

13




FSM Notation

Mouse_Dn /Draw_Line()

Georgia
Tech

&

® Means: when you are in state A and you see a mouse
down, do the action (call draw_line), and go to state B

14




FSM Notation

® Sometimes also put actions on states

same as action on all incoming transitions

Georgia
Tech

15




Rubber banding again Ge%sgg@
(cutting up the code) :

or endpoint pl;

Répeat
B: Erase line P1-P2;

—P2——Current—posTtIOon{ )T

‘ Draw line Pl:PZt

C: Act on line input;

16




FSM control for rubber banding

Move /B

Georgia
Tech

&

G Press / A Release / C

A: p2——=_D1l2

’

Draw line P1-P2;

B: [Erase line Pl1-P2:

P2 = current_positilon();
Draw line P1-P2;

@

17




Second example: button

highlight
change highlight

Press inside
Move in/out
Release inside act

Release outside

Vv

do nothing

Georgia
Tech

18




FSM for a button?

Georgla @

19




FSM for a button

Enter/C

Georgla @

Q Release /D @

Leave/B

@ Press-inside /A C Release/ E

O

20




00
0000
_ o000
Georgia eo0o0
Tech 0

FSM for a button Q —

Enter/C Leave /B

-O

G Press-inside /A G Release /E

A: highlig
B: unhigh
C: highlig

nt button
ight button

Nt button

D: <do nothing>
E: do button action

O




Georgia
Tech

In general...

® Machine states represent context of interaction
“where you are” in control flow
® Transitions indicate how to respond to various events

what to do in each context

22




'TXX
_ ' TXX
Georgia eo0o0
Tech : bt

“Events’ in FSMs

® VWhat constitutes an “‘event’ varies

may be just low level events, or
higher level (synthesized) events
e.g. region-enter, press-inside

Example: Swing ActionEvents
Generated from a range of different low-level events
= Completion of button activation FSM
= Hitting enter in a text field

23




'TXX
_ ' TXX
Georgia eo0o0
Tech : bt

Guards on transitions

® Sometimes also use “guards”
predicate (boolean expression) before event
adds extra conditions req to fire

typical notation: pred: event / action
e.g. button.enabled: press-inside / A

Note: FSM augmented with guards is Turing complete

24




FSM are a good way to do ceso

_ I
control flow in event driven Ge%;%ﬁ@ o
systems

® Can do (formal or informal) analysis
are all possible inputs (e.g. errors) handled from each state
what are next legal inputs
can use to enable / disable

® Can be automated based on higher level specification

25




Georgia
o0

Tech

Implementing FSMs

state = start state;
for (;;) A
raw evt = wait for event();
evt = transform event(raw evt);

state = fsm transition(state, evt);

® Note that this is basically the normal event loop

26




Implementing FSMs

Georgia
o0

Tech

fsm transition(state, evt)

¢ase O0O:

case 1:

switch (state)

// case for each state

// case for next state

27




Georgia
o0

Tech

Implementing FSMs

| a)

switch (evt.kind)
dase loc move: // trans evt
. action .. // trans action

state = 42; // trans target
case loc dn:

switch (evt.kind)

28




Implementing FSMs

fsm transition(state, evt)
switch (state)

state = 42; //
case loc dn:

case 1l: // case for next
switch (evt.kind)
return state;

'TXX

_ ' TXX

Georgia eo0o0
Tech

trans
trans
trans

state

evt
action

gase O: // case for each state
switch (evt.kind)
dase loc move: //
. action .. //

target

29




'TXX
_ ' TXX
Georgia eo0o0
Tech : bt

Table driven implementation

® Very stylized code
® Can be replaced with fixed code + table that represents FSM

only have to write the fixed code once

can have a tool that generates table from something else

30




Table driven implementation

® Table consists of array of states
® Each state has list of transitions
® Each transition has

event match method

list of actions (or action method)

target state

Tech

Georgia &

31




Georgia
o0

Tech

Table driven implementation

fsm transition(state, evt)
for each transition TR in table[state]
f TR.match(evt)
T TR.action();
state = TR.to state();
break;

return state

® Simpler: now just fill in table

32




